本发明公开了一种面向流程对象的工业过程建模预测方法,包括如下步骤:FNT模型建立,从流程对象已经生成的数据仓库中抽取工业流程对象原始数据集S,创建FNT模型的初始种群,种群个体数目根据需要定制,每个个体表示一个FNT模型;利用PIPE算法优化FNT模型结构,适应值函数采用均方误差或均方根误差;利用微粒群(PSO)算法优化FNT模型参数;利用FNT模型对流程对象生产过程进行建模预测。本发明基于柔性神经树获取流程对象各测点数据的变化趋势公式,对工业生产过程进行模拟,基于当前生产状态的相关参数预测未来一段时间的生产状态,从而辅助指导企业调整生产流程参数,在微观上引导生产趋利避害。